
NASA/CR-97-206275

ICASE Report No. 97-70

A Parallel Pipelined Renderer for the Time-Varying
Volume Data

Tzi-Cker Chiueh and Kwan-Liu Ma

December 1997
III I II

The NASA STI Program Off'we... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides
access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA Access

Help Desk at (301) 621-0134

Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

NASA/CR-97-206275

ICASE Report No. 97-70

A Parallel Pipelined Renderer for Time-Varying
Volume Data

Tzi-Cker Chiueh

State University of New York at Stony Brook

Kwan-Liu Ma

ICASE

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-19480

December 1997

Available from the following:

NASACenter fo_ AeroSpac_ Info_atio_(CAS _ Nation_Techn!c_,Information Service _S)

800 Elkridge Landing Road 5285 Port Royal Road

Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

A PARALLEL PIPELINED RENDERER FOR TIME-VARYING VOLUME DATA

TZI-CKER CHIUEH 1 AND KWAN-LIU MA 2

Abstract.

This paper presents a strategy for efficiently rendering time-varying volume data sets on a distributed-

memory parallel computer. Time-varying volume data take large storage space and visualizing them requires

reading large files continuously or periodically throughout the course of the visualization process. Instead

of using all the processors to collectively render one volume at a time, a pipelined rendering process is

formed by partitioning processors into groups to render multiple volumes concurrently. In this way, the

overall rendering time may be greatly reduced because the pipelined rendering tasks are overlapped with

the I/O required to load each volume into a group of processors; moreover, parallelization overhead may

be reduced as a result of partitioning the processors. We modify an existing parallel volume renderer to

exploit various levels of rendering parallelism and to study how the partitioning of processors may lead to

optimal rendering performance. Two factors which are important to the overall execution time are resource

utilization efficiency and pipeline startup latency. The optimal partitioning configuration is the one that

balances these two factors. Tests on Intel Paragon computers show that in general optimal partitionings do

exist for a given rendering task and result in 40-50% saving in overall rendering time.

Key words, direct volume rendering, parallel rendering, pipelining, time-varying data, MPP computers.

Subject classification. Computer Science

1. Introduction. Time-varying volumetric data sets (TVVD), which may be obtained from numerical

simulations or sensing instruments, provide scientists insights into the detailed dynamics of the phenomenon

under study. When appropriately rendered, they form an animation sequence that can illustrates how the

underlying structures evolvc over time. For visualizing large data sets, parallel processing is often used to

speed up the expensive volumetric rendering process. Although the subject of rendering a single volumetric

data set using a parallel computer has been studied extensively by numerous researchers [17, 16, 14, 22, 10],

parallel animation of TVVD, in contrast, has received relatively little attention.

Compared to parallel volume rendering of a single data set, rendering TVVD in parallcl poses a different

set of design tradeoffs. First, because TVVD typically consists of a sequence of data volumes, the I/O

overhead to bring the data into the parallel machines accounts for a significant portion of the end-to-end

response time, and can no longer be ignored as is done in many analyses of parallel volume rendering. The

key technique to address this I/O problem is to hide the I/O overhead by overlapping computation with

I/O. Secondly, since a TVVD rendering job is actually comprised of multiple rendering tasks, it is important

to make efficient utilization of the computation resources so that the overall rendering time is minimized.

In particular, one should remember that parallelization almost always incurs certain overhead such as data

distribution, communication of intermediate results, result collection, and synchronization. Therefore it is

1Computer Science Department, State Universlty of New Yo/-k- at Stony Brook, Stony Brook,- New York 11794-4400,

chiuch_cs.sunysb.edu.

2Institute for Computer Applications in Science and Engineering, Mail Stop 403, NASA Langley Research Center, Hampton,

VA 23681-0001, kma_icase.edu.

This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480

while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE).

critical to achieve a balance between the parallelism and overhead of individual rendering tasks, with the goal

of optimizing the overall performance of the entire TVVD rendering job. Thirdly, whereas in single-data-set

rendering the response time is the single most important criterion, in TVVD rendering there are multiple

criteria that are potentially of interest to the users. One possibility is the start-up latency, the time until the

first image appears. Another candidate is the overall execution time, the time until the last image appears.

Depending on the requirements of the end users, different design tradeoffs need to be made to optimize

different performance criteria.

We argue that parallel volume animation requires re-thinking of the types of parallelism one should

exploit to achieve the optimal performance. In particular, I/O overlap and resource utilization efficiency play

a crucial role in the parallelization strategy. We start with a generic parallel volume rendering program [14],

modify it to experiment with different approaches for parallel volume animation of time-varying data sets, and

analyze the performance tradeoff among various partitioning strategies. Although the results and analysis

are based on implementations on an Intel Paragon, we believe that the conclusions should remain valid for

other parallel distributed memory architectures.

2. Related Work. Ideally, visualizing time-varying volume data should be done while data are being

generated, so that users receive immediate visual feedback on the subject under study, and so the visualization

results can be stored rather than the much larger raw data. VISUAL3 [7] and SCIRun [18] are among the

many software systems that can support runtime tracking of three-dimensional numerical simulations. These

systems may be operated in a distributed computing environment. Rowlan [19] and Ma [12] also demonstrate

such tracking capability using direct volume rendering on a massively parallel computer. However, runtime

tracking is not always possible and desirable for certain applications. For example, one may want to explore

the data set from different perspectives; or, the amount of computation power required for real-time rendering

or a special visualization technique may be not readily available. As a result, postprocessing of pre-calculated

data remains an important requirement.

Several techniques have been developed for visualizing time-varying data as a postprocess. Lane [11]

developed a particle tracer for three-dimensional time-dependent flow data. Max and Becker [15] apply

textures for visualizing both steady and unsteady flow field. Silver and Wang [23] present a volume based

feature tracking algorithm to help visualize and analyze large time-varying data sets. More recently, Jaswal

demonstrates distributed real-time visualization of time-varying data using a CAVE [8]. He identifies that

I/O is the single most constraining factor in the level of interactivity and suggests to perform various types

of filtering to reduce the amount of data sent and rendered.

More closely related to our work is the ray-cast rendering strategy introduced by Shen and Johnson [21]

which they call di_erential volume rendering. By exploiting the data coherency between consecutive time

steps, they are able to reduce not only the rendering time but also the storage space by 90% for their two

test data sets. Differential volume rendering is potentially parallelizablc and a caching technique [13] may

be integrated into the renderer to avoid recalculations for visualizing irregular data. Goel and Mukherjee [6]

also develop an approach similar to Shen and Johnson's and achieve comparable saving.

Turning to the I/O issue, the MPI-IO initiative [1] represents an effort to develop a standard for portable

parallel I/O. Even with the presence of parallel I/O, we cannot guarantee that I/O time becomes less

dominant, especially when processor technology is advancing at a faster pace than I/O technology. In fact,

the strategy we develop in this research can be used in conjunction with parallel I/Oto achieve maximum

performance.

There has also been previous research investigating the I/O characteristics of graphics and visualization

applicationsonparallelcomputers[5,20]. Chiueh[3]presentcda memoryaccessalgorithmthat allows
conflict-freeaccessto aninterleavedmemorysystemthat storesvolumetricdatasets.Thesamealgorithm
is directlyapplicablein thecontextof paralleldiskarrays.Theworkdescribedhere,in contrast,focuses
mostlyon resourceutilizationandparallelismto optimizethe overallprocessof visualizingtime-varying
volumedataonparalleldistributed-memoryarchitectures.Wealsowantto to investigatethefeasibilityof
buildingavolumetricdatamanagementsystem[9,2]that iseasyto useontheonehand,andiscapableof
efficientlyinterfacingwithparallelrenderingenginesontheother.

3. Parallelizatlon Approaches. The basic structure of a generic parallel volume rendering pro-

gram [14] forms a three-step pipeline: 3D data distribution, in which the volumetric data set is decomposed

into subvolumes and distributed to the processor nodes, subvolume rendering, in which each processor node

renders the assigned subvolume into a 2D subimage, and image compositing, in which the set of 2D subim-

ages from thc previous step are composited according to the view angle to arrive at the final 2D projected

image. Whcn the degree of parallelism is small to modest, i.e., under 16 nodes, the major portion of the

computational overhead is attributed to subvolume rendering. However, when the degree of parallelism is

high or when the data set itself is large (say 10243), 319 data distribution becomes a significant performance

factor.

Given a generic parallel volume renderer and a P-processor machine, there axe three possible approaches

to turn it into a parallel volume animator for TVVD sets. The first approach simply runs the parallel volume

renderer on the sequence of data sets one after another. At any point in time, the entire P-processor machine

is dedicated to rendering a particular volume 1. Therefore, only the parallelism associated with rendering

a single data volume, i.e., intra-volume parallelism, has been exploited. The second approach takes the

exact opposite approach by rendering P data volumes simultaneously, each on one processor. This approach

thus only exploits inter-volume parallelism. As the optimal systems performance can only be achieved by

carehtlly balancing two performance factors, resource utilization efficiency and parallelization overhead, both

intra-volume and inter-volume parallelism should be exploited. The third approach is a hybrid, in which P

processor nodes are partitioned into L groups (1 < L < P), each of which renders one data volume at

a time. Wc will show later that the third approach indeed performs the best among the three. However,

the optimal choice of L depends on the type and scale of parallel machine as well as the size of data set.

Detailed characterizations of the optimal partitioning strategy are described in Section 5.

4. Performance Analysis.

4.1. Metrics. Parallel volume animation of TVVD sets involves rendering multiple data volumes in

a singlc task. There are three potential performance metrics: start-up latency, the time until the rendered

image of the first volume appears; overall execution time, the time until the rendered image of the last volume

appears; and inter-frame delay, the average time between the appearance of consecutive rendered images, in

conventional volume rendering applications, since only one data set is involved, start-up latency and overall

execution time are the same, and inter-frame delay is irrelevant. However, when volume animation is used

interactively, start-up latency and inter-frame delay play crucial role in determining the effectiveness of the

system. When volume animation is run in a batch mode, overall execution time should be the major concern.

Note that different design tradcoffs have to be made for different performance criterion. For example, if start-

up latency is the criterion of choice, then the first approach discussed in Section 3 probably should be the

1Here we assume the pipeline effect is ignored.

designof choice.In therestofthepaper,we will use the overall execution time as the main criterion and

only mention the other two when appropriate.

4.2. Performance Models. Before we present our experiments, it's useful to construct a performance

model for each of the approaches described above so that one can have a basic understanding of the results.

For the rest of the discussion in this paper, without limiting the applicability of our research results, we

assume a completely serial I/O system in order to focus on other issues.

Assume that there are N data volumes in the TVVD set, there are P processors in the system, and

without loss of generality N = k * P. Let to_(p) denote the total rendering time for a single data volume

using p processors, including file access and data distribution, rendering, compositing, and image delivery,

rio(p) the time to distribute a data set from the disk to the p processors in the beginning of rendering a

data volume, and T(L) the overall execution time for rendering N data volumes when P processors are

decomposed into L groups, each of which consists of p processors.

For the intra-volume approach, the overall execution time is

(4.1) T(1) = YXtor(P)

Because P processors are collectively used to render one data volume at a time, the rendering task for the

j-th volume won't start until that for the (j - 1)-th volume ends. The timing diagram for this approach is

shown in Figure 1. For the inter-volume approach, the overall execution time is

(4.2) T(P) = kxmax{tor(1), Pxt,o(1)} + min{tor(1) - t,o(1), (P- 1)xt,o(1)}

Because each data volume is rendered only by a single processor, there are at most P concurrent rendering

tasks on the system. If P* rio(l) > to_(1), then the system is IO-bound. That is, the rendering task for the

(P + j)-th volume cannot start immediately after the j-th volume is done. The second term in Equation (2)

accounts for the fact that the completion time for the N-th volume is later than that for the (N - P+ 1)-th

volume either by (P-l) * t,o(1) whentor(1) < P*t,o(1), or by tor(1)-tio(1) whentor(1) > P'rio(I). The

timing diagram for the inter-volume approach assuming tot(l) > Pxtio(1) is shown in Figure 2. For the

hybrid approach, assume that P processors are divided into L groups, each of which now contains P9 -- P

processors, then the overall execution time is

N
(4.3) T(L) = --[xmax{to_(Pg), Lxt,o(Pg)} + maxItor(Pg) - t,o(Pg), (L - 1)xt,o(Pg)}

As can be seen, the performance formula for the inter-volume approach is essentially an instance of that of

the hybrid approach when L = P. Note that whether the rendering task is IO-bound or CPU-bound depends

on the size of the data set as well as the number of processors ill the system.

5. Test Results.

5.1. Experiment Setup. An existing parallel volumc renderer [14] is modified in such a way that it can

exploit different levels of intra-volume and inter-volume parallelism by varying the configuration parameter

L, the number of processors dedicated to a single volume given that the total number of processors is fixed.

Our tests were run on a 72-node Intel Paragon computer operated by the NASA Langley Research Center

as well as the 512-node Intel Paragon computer at the California Institute of Technology. The data set

is obtained from a time-dependent turbulence simulation and its size is 128x 128 x 128. Snapshots from a

volume-rendered animation of the data showing vorticity magnitude are shown in Figure 3. Image resolution

is 256x256.

The general structure of the program is shown in Figure 4. Given P processor nodes, there are L virtual

P physical processor nodes. In addition, a host node performsrendering nodes, each of which consists of T

Time

I/0

FIG. 1. Utilization of system components under the Intra-Volume approach. The numbers denote the data volume number.

I/O

Node

Node:

........................ tor(1)

1

2

v

I

6

M 7

4 I]

I
I

F_c. 2. Utilization of system components under the Inter-Volume approach when to_(1) > Pxtio(1). The number in

each box denotes the data volume number. The number of processors, P, is assumed to be _.

disk I/O access and volumetric data distribution. The same host node also collects the 2D subimages from

each node to form the resultant image and sends it to the end user over the network. Because multiple

data volumes are being rendered simultaneously, appropriate flow control is needed to maintain appropriate

synchronization between the host node and the virtuaI render nodes. These are indicated in Figure 4 as gray

lines going in both direction. Without proper synchronization, subimages from different rendering runs may

become intermixed. For the rest of the discussion, the term "number of processors" refers to the number

of physical processor nodes involved in rendering only, i.e., excluding the I/O and display nodes. Also, the

number of data volumes rendered in each run is made equal to the number of physical processors. We make

this assumption to ensure that the pipeline start-up overhead will be appropriately accounted for in the

performance evaluation.

FI(.;. 3. Snapshots from an animation of three-dimensional turbulent shear flow calculations. The numerical model was

developed by Dr. J, Shebalin al the Fluid Mechanics and Acoustics Division of NASA Langle_y Resenr_:h Center and the.

calculations were done on a Cray YMP.

host
node

..--"....... rtu i...........l
: rendering _ [
.........,.0.,o._..........L

IIlIIIlIIlIIIlIIIlIllIIIIlIIlIlIlI_i

virtual .:
" rendering
-: node 2 .-:
_l|l | I I Ill llllllllllllllllll I I1 | Ill

r........_;.;;_:.-.
rendering Li

.= node ,
llll i ii! II l IIIII III III III III III I Ill

data path _ synchronization

FxG. 4. Software arehilectuT_ of the implemented parallel volume animator. P computation processors are partitioned into

L virtual rendering nodes, each of which is responsible for rendering a single data volume loaded from disk through a host node.

Overall Time

750

70o

65o

600

5,5o

500

45o

400

350

3o0

250

200

150

100

50

0

1 2 4 8 16 32 64

numer of partitions

FIG. 5. The overall execution time versus the number of partitions for three different processor sizes.

5.2. Results and Analysis. Our conjecture that the optimal performance can only be achieved by

effectively exploiting both intra-vohime and inter-volume parallelism is confirmed by Figure 5, which illus-

trates the relationship between the overall execution time and the number of processor partitions (L), and is

on a log2 scale along the X axis. With 16 processors, the optimal number of partitions for rendcring 16 data

volumes is 2 or 4; with 32 processors, the optimal number for rendering 32 volumes becomes 4 or 8; with 64

processors, the optimal number is 8. We want to re-emphasize that the overall execution time shown con-

sists of three phases: data distribution,which includcs both disk I/O and data distribution; rendering, which

includes rendering and compositing; and image display, which includes collecting subimages and transferring

the final image over the network.

Intuitively, when L = 1, each data volume is rendered one after another, without any overlap between

different phases from consecutive runs. As a result, the utilization of various system components, as shown

in Figure 1, is inherently suboptimal. For example, the utilization of the rendering nodes is

_rendering

tdata_distributio n _- trenderlng q- tdisplay

On the other hand, when L -- P, it takes at least P runs for the entire pipeline to become active, as

shown in Figure 2, where P is assumed to be 4. Since we assume there are a total of P data volumes in

the sequence, the pipeline never has a chance to achieve its optimal throughput. Consequently, the overall

execution time is the worst among all possible configurations for a fixed number of processors. It should be

noted, however, that when the number of data volumes in the time-varying data set is much larger than the

number of physical processors so that the start-up overhead can be effectively amortized, the inter-volume

(seconds)
5oo

3O0

2OO

150

100

70

5O

30

20

15

10

7

5

•--'i--- Start-up Latency

.iLl Inter-Frame Delayi

32 processors

1283 voxels to

1 2 4 8 16 32

nurner of partitions

FIG. 6. The overall execution time, start-up latency, and average inter-frame delay versus the number of partitions, when
P =32

approach should achieve the best overall execution time because it incurs the least parallelism overhead.

Our test results in fact show such a trend in both 16- and 64-processor cases. In practice, this assumption is

not necessarily true--when the data set size exceeds the node memory, the inter-volume approach is simply

not feasible. The optimal partitioning presumably minimizes the start-up overhead while maximizing thc

utilization efficiency of the rendering nodes.

As wc mentioned earlier, there are multiple performance criteria for parallel volume animation of TVVD

sets. Figure 6 shows the behavior of the three criteria described earlier versus the degree of partitioning,

and the tradeoff among them. The number of processors in this case is fixed at 32. The start-up latency

is monotonically increasing with the number of partitions because the number of processors dedicated to a

single data volume is decreasing. The average inter-frame delay is computed by subtracting the start-up

latency from the overall execution time and dividing the result by the number of datayolumes rendered-

Because of the dominance of the overall execution time, the inter-frame delay exhibits a somewhat similar

curve as that associated with overall execution time. The computed inter-frame delay is almost identical to

the average of the inter-frame delays from actual measurements. Note that the computed average inter-frame

delay doesn't necessarily correspond to the apparent inter-frame delay that users experience. In general, the

rendered frames come in a burst, stop for a while, and repeat again. The fact that there is a stop period

is symptomatic of an imbalance between the data distribution and rendering phases. It is interesting to

observe that the smoothest rendering, i.e., the one with the shortest stop period between bursts, indeed

occurs under the configuration that has the smallest overall execution time, because it is the most balanced

among system components. For P = 32, Loptirnal = 4 or 8.

TABLE 1

A breakdown of the rendering time for generating a single frame when using up to 3_ processors.

tasks

initialize renderer

ray-cast resample

composite partial images

32 nodes

0.269

2.8

1.068

16 nodes

0.654

5.5

1.43

8 nodes

1.593

9.5

2.32

total time 4.137 7.584 13.413

4nodes 2nodes I lnode

3.36 7.02 12.96

19 37 64

3.747 5.96 0.00

26.107 49.98 76.96

Overall Time

450

400

350

300

250

200

1 2 4 8 16 32

numer of partitions

FIG. 7. Comparing the measured performance with the predicted performance for the 3P-processor case.

Table 1 displays a more detailed look at the rendering cost, in which we show the time to generate a single

frame by using up to 32 processors. The initialization time is mostly for computing the voxel gradient values

for lighting calculations. This initialization must be done for each volume. Both initialization and the ray-cast

resampling time increase in inverse proportion to the number of processors which are used to render a volume.

The compositing time, which includes both calculation and communication components, also decreases when

more processors are used, except for the one-processor case in which no compositing calculation is needed

after the resampling process. The total rendering time illustrates the increasing parallclization penalty we get

when using more processors in a partition. Hence, with the same number of processors, rendering multiple

volumes concurrently reduces the aggregate parallelization overhead and gives us better overall throughput.

Note that the C++ implementation of the renderer preclude us from using the Paragon's native compiler,

resulting in at least 30% performance degradation. VChile we may be able to optimize our renderer to obtain

better rendering rates, this would show more significantly the relative performance degradation due to I/O

delay.

Finally, in Figure 7, we compare the measured performance with the predicted performance for the

32-processor case. To predict performance using our model, we must first determine the values of t,o and

to_. This is done by running rendering jobs using one partition. Figure 7 shows that the measured overall

execution time correlates quite well with the prediction from the model, though some small discrepancies

occur. Presumably this is because the performance model in Section 4 is stated in terms of delays associated

with high-level primitives.

6. Conclusions.Renderingtime-varyingvolumetricdatasetsposesadifferentproblemthanrendering
a single-volumedataset.Westartwitha naiveapproachbyrepeatingtheexecutionof a genericparallel
volumerendereronthetime-varyingsequenceof3Ddatasets,andfindthatduringthebeginningandtheend
oftherenderingprocessforasingledataset,thenodesaremostlyidle,thuswastingresourcesunnecessarily.
Toaddressthisproblem,wetry to pipelinetherenderingtasksfor consecutivedatasetsin thesequence,
essentiallyexploitinginter-volumeaswellasintra-volumeparallelism.Givena fixednumberof processor
nodesandI/O bandwidth,theresearchquestionis whattheoptimalbalanceisbetweeninter-volumeand
intra-volumeparallelismexploitation.Wehaveimplementedaprototypevolumerendererthat embodies
theideaof pipelinedrenderingfortime-varyingdatasets.Weareableto attainthemosteffectivesystem
utilizationboundedonlyby the datadistributionoverhead.Wealsoidentifythreepossibleperformance
criteriaforevaluatingTVVDdatasets,andshowthatdifferentpartitioningstrategiesareneededto optimize
fordifferentcriteria.

Our resultsshowthat thereindeedexistsanoptimalpartitioningfor a givendatasetanda parallel
computerconfiguration.But theoptimumdependsonsuchfactorsasthemachinesize,thelengthofTVVD
sequence,andtheratiobetweencomputationandcommunication/IOoverheads,whichin turn isaffected
by thehardwarecharacteristicsandthe coherencepropertyof thedatasetitself. If thesehardwareand
data-specificparameterswereavailable,anoptimalpartitioningcouldbedeterminedautomatically.

Thisstudyalsohelpsus identifythedesignissuesto constructavolumetricdatamanagementsystem
that caninterfacewithparallelrenderingenginesefficiently.In thiswork,we findthat a dedicatedI/O
managerplaysan importantrolein improvingtheoverallperformanceof TVVDrendering.It thusseems
logicalto includesuchan I/O managerin theenvisionedvolumetricdatamanagementsystem.However,
thereremainstheworkof developingasufficientlyflexibleinterfacefortheI/O managerthat cansmoothly
intergratewith awidevarietyofparallelrenderers.Aspartof thevolumetricdatabaseproject,wearealso
workingonvolumetricdatacompressionalgorithms[4]that areshownto be "friendly"to volumerenderers,
i.e.,algorithmsthat caneffectivelyexploitthecoherencypropertiesofvolumerenderingcomputation.

{].1. Future Work. As we mentioned, this approach can be used in conjunction with parallel I/O

facilities to achieve even better rendering rates. Furthermore, with a good parallel I/O system, the renderer

can also read ahead by keeping multiple buffers at each rendering node: one for the current frame being

rendered and one for the next frame being read ahead. The read-aheads would then have to use asynchronous

read requests which return after the read is queued but before it completes.

The current implementation of the renderer may be optimized in two ways. First, it takes a slice-by-

slice broadcasting approach to distribute the volume data set to the processor nodes, which then pick up

the assigned portions of the slices. A more efficient approach is to store 3D subvolumes on the disk, and

distribute 3D subvolumes to appropriate nodes directly. One advantage of this approach is the reduction of

intermediate packing/unpacking overhead. Ultimately a database system specifically designed for efficient

access to volumetric data will be the most desirable solution.

Second, all processors involved in a rendering run currently have to be either implicitly or explicitly

synchronized. As a result, additional synchronization overhead is inevitable. An alternative approach is to

take a dataflow, functionally-specialized model in which each processor node receives data packets, performs

a fixed function, and sends them to the next processor node in the logical pipeline. Each piece of data

travels across the system with a tag to identify the associated volume. With this architecture, there is no

need to synchronizc the processors in a lock-step fashion, thus reducing the synchronization delay. It's up

to the final pipeline stage to pull the subimages together and form the final image. All other nodes are

10

in anautonomousloopandoperatecompletelyindependentlyofoneanother.Becausethroughputismore
importantthanlatencyfor parallelvolumeanimation,thismodelseemsto bca betterfit thanthecurrent
implementation.

Acknowledgement.WewanttothanktheCenterforAdvancedComputingResearchat theCalifornia
Instituteof Technologyfor accessto theirIntelParagoncomputers.Thanksalsogoto TomCrockettand
JamiePainterformanyusefulsuggestions.

REFERENCES

[1] A Parallel File I/O Interface for MPI. http://lovelace.nasa.nasa.gov/MPI-IO.

[2] J. BOYLE, S. EICK, M. HEMMJE, D. KEIM, J. LEE, AND E. SUMNER, Database Issues for Data

Visualization: Interaction, User Interfaces, and Presentation, in Proceedings of the IEEE 1993

Database Issues for Data Visualization Workshop, Springer-Verlag, 1994, pp. 25 34.

[3] W.-C. CHIUEH, A Novel Memory Access Mechanism for Arbitrary-View-Projection Volume Rendering,

in Proceedings of Supercomputing '93 Conference, 1993.

[4] T. Z. CHIUEH, C. K. YANG, T. HE, H. PFISTER, AND A. KAUFMAN, Integrated Volume Compression

and Visualization, in Proceedings of the Visualization '97 Conference, October 1997, pp. 329 336.

[5] P. E. CRANDALL, A. A. RUTH, A. A. CHIEN, AND D. A. REED, Input/Output Characteristics of

Scalable Parallel Applications, in Proceedings of Supercomputing '95, November 1995.

[6] V. GOEL AND A. MUKHERJEE, Volumetric Ray Casting of Time Varying Data Sets, in Proceedings

of the ICASE/LaRC Symposium on Visualizing Time-Varying Data, 1996, pp. 89 106. NASA

Conference Publication 3321.

[7] R. HAIMES, Unsteady Visualization of Grand Challenge Size CFD Problems: Traditional Post-

Processing vs. Co-Processing, in Proceedings of the ICASE/LaRC Symposium on Visualizing Time-

Varying Data, 1996, pp. 63 75. NASA Conference Publication 3321.

[8] V. S. JASWAL, CAVEvis: Distributed Real-Time Visualization of Time-Varying Scalar and Vector

Fields Using the CAVE Virtual Reality Theater, in Proceedings of the Visualization '97 Conference,

October 1997, pp. 301 308.

[9] P. KOCHEVAR, Database Management for Data Visualization, in Proceedings of the IEEE 1993 Database

Issues for Data Visualization Workshop, Springer-Verlag, 1994, pp. 109 117.

[10] P. LACROUTE, Analysis of a Parallel Volume Rendering System Based on the Shear- Warp Factorization,

IEEE Transactions on Visualization and Computer Graphics, 2 (1996), pp. 218-231.

[11] D. LANE, UFAT- A Particle Tracer for Time-Dependent Flow Fields, in Proceedings of the Visualization

'94 Conference, 1994, pp. 257 264.

[12] K.-L. MA, Runtime Volume Visualization for Parallel CFD, in Proceedings of Parallel CFD '95 Con-

ference, 1995. California Institure of Technology, Pasadena, CA, June 25-28.

[13] K.-L. MA, M. COHEN, AND J. PAINTER, Volume Seeds: A Volume Exploration Technique, The Journal

of Visualization and Computer Animation, 2 (1991), pp. 135- 140.

[14] K.-L. MA, J. S. PAINTER, C. HANSEN, AND M. KROGH, Parallel Volume Rendering Using Binary-

Swap Compositing, IEEE Computer Graphics and Applications, 14 (1994), pp. 59 68.

[15] N. MAX AND B. BECKER, Flow Visualization using Moving Textures, in Proceedings of the

ICASE/LaRC Symposium on Visualizing Time-Varying Data, 1996, pp. 77-88. NASA Conference

Publication 3321.

11

[16]U. _NTEUMANN, Communication Costs for Parallel Volume-Rendering Algorithms, IEEE Computer

Graphics and Applications, 14 (1994), pp. 49 58.

[17] J. NIEH AND M. LEVOY, Volume Rendering on Scalable Shared-Memory MIMD Architectures, in 1992

Workshop on Volume Visualization, 1992, pp. 17-24. Boston, October 19-20.

[18] S. G. PARKER AND C. R. JOHNSON, SCIRun: A Scientific Programming Environment for Com-

putational Steering, in On-line Proceedings of the 1995 Supercomputing Conference, 1995.

http://scxy.tc.cornell.edu/sc95/proceedings/.

[19] J. ROWLAN, E. LENT, N. GOKHALE, AND S. BRADSHAW, A Distributed, Parallel, Interactive Volume

Rendering Package, in Proceedings of the Visualization '94 Conference, 1994, pp. 21-30.

[20] K. SEAMONS AND M. WINSLETT, An Efficient Abstract Interface for Multidimensional Array I/O, in

Proceedings of Supercomputing '94, November 1994, pp. 650 659.

[21] H.-W. SHEN AND C. JOHNSON, Differential Volume Rendering: A Fast Volume Visualization technique

for Flow Animation, in Proceedings of the Visualization '94 Conference, October 1994, pp. 180 187.

[22] C. SILVA AND A. KAUFMAN, Parallel Performance Measures for Volume Ray Casting, in Proceedings

of Visualization '94 Conferencc, 1994, pp. 196 204.

[23] D. SILVER AND X. WANG, Volume Tracking, in Proceedings of the Visualization '96 Conference, 1996,

pp. 157-164.

12

Form Approved

REPORT DOCUMENTATION PAGE OMB'No. 0704-0188
i

Public reporting burden For this collection of information is estimated to average 1 hour per response, including the tlme For reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate For Information Operations and Reports, 1215 JefTerson
Davis Highway. Suite 1204, Arlington, VA 22202-4302, and to the O_ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Contractor Report

4. TITLE AND SUBTITLE

A Parallel Pipelined Renderer for Time-Varying Volume Data

6. AUTHOR(S)
Tzi-Cker Chiueh

Kwan-Liu Ma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-70

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/CR-97-206275

ICASE Report No. 97-70

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
Submitted to the International Journal in High Performance Computer Graphics, Multimedia and Visualisation

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60,61
Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

13. ABSTRACT (Maximum 200 words)

This paper presents a strategy for efficiently rendering time-varying volume data sets on a distributed-memory
parallel computer. Time-varying volume data take large storage space and visualizing them requires reading large

files continuously or periodically throughout the course of the visualization process. Instead of using all the processors

to collectively render one volume st a time, a pipelined rendering process is formed by partitioning processors into

groups to render multiple volumes concurrently. In this way, the overall rendering time may be greatly reduced

because the pipetined rendering tasks are overlapped with the I/O required to load each volume into a group of
processors; moreover, parallelization overhead may be reduced as a result of partitioning the processors. We modify

an existing parallel volume renderer to exploit various levels of rendering parallelism and to study how the partitioning

of processors may lead to optimal rendering performance. Two factors which are important to the overall execution

time are resource utilization efficiency and pipeline startup latency. The optimal partitioning configuration is the

one that balances these two factors. Tests on Intel Paragon computers show that in general optimal partitionings

do exist for a given rendering task and result in 4o-50time.

14. SUBJECT TERMS

direct volume rendering, parallel rendering, pipelining, time-varying data, MPP com-

puters

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_ISN7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

17

16. PRICE CODE

A_)3
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z3g-18
298-102

